

Alexandre Reis Saré

Comportamento de Escavação Grampeada Instrumentada em Solo Residual

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientadores: Alberto Sampaio Ferraz Jardim Sayão Anna Laura Lopes da Silva Nunes

Rio de Janeiro, novembro de 2007.

Alexandre Reis Saré

Comportamento de Escavação Grampeada Instrumentada em Solo

Residual

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Civil. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Alberto Sampaio Ferraz Jardim Sayão Presidente/Orientador - Departamento de Engenharia Civil – PUC-Rio

> Prof^a. Anna Laura Lopes da Silva Nunes Co-Orientadora - COPPE/UFRJ

Prof. Celso Romanel Departamento de Engenharia Civil – PUC-Rio

Prof. Sergio Augusto Barreto da Fontoura Departamento de Engenharia Civil – PUC-Rio

> Prof. Roberto Quental Coutinho UFPE

Prof. Willy Alvarenga Lacerda COPPE/UFRJ

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 09 de novembro de 2007.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Alexandre Reis Saré

Graduou-se em Engenharia Civil, com ênfase em Geotecnia, pela Universidade Federal do Pará, em 2001. Ingressou no curso de mestrado em Geotecnia da PUC-Rio e desenvolveu uma dissertação sobre avaliação das condições de fluxo em uma barragem de terra. Ingressou no curso de doutorado em Geotecnia em 2003, e atuou na área de geotecnia experimental, desenvolvendo pesquisa sobre caracterização, instrumentação e monitoramento de uma escavação grampeada. Participou do Programa de Doutorado com Estágio no Exterior (PDEE) na Faculdade de Engenharia da Universidade do Porto (FEUP) em Portugal. Até outubro de 2007, publicou oito artigos técnicos e participou de diversos congressos e simpósios em geotecnia.

Ficha Catalográfica

Comportamento de Escavação Grampeada Instrumentada em Solo Residual / Alexandre Reis Saré; orientadores: Alberto de Sampaio Ferraz Jardim Sayão e Anna Laura Lopes da Silva Nunes – Rio de Janeiro: PUC-Rio, Departamento de Engenharia Civil, 2007.

[32], 304f.: il ; 30cm

Saré, Alexandre Reis

Tese de doutorado – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas

 Solo grampeado. 2. Escavação. 3. Instrumentação. 4. Monitoramento. 5. Solo Residual.

CDD: 624

PUC-Rio - Certificação Digital Nº 0310915/CA

Ao meu avô, Teófilo Saré, que iniciou a vocação familiar pela Geotecnia e que partiu no mesmo dia que esta pesquisa foi iniciada.

Agradecimentos

Aos meus pais, pela inesgotável fonte de incentivo e confiança em meu trabalho. Por sempre estarem ao meu lado apesar da distância que nos separou este tempo todo. Nosso amor é a razão de nossas vidas.

Aos meus orientadores Alberto Sayão e Anna Laura Nunes pela dedicação e fundamental contribuição ao trabalho em todas as fases.

A minha família por ser meu alicerce e minha incentivadora. Agradeço a todos que torceram e acreditaram pela realização desse trabalho em especial a minha avó Lúcia, meu primo Alberto e meu tio Paulo.

Ao meu orientador António Cardoso pelo suporte e confiança durante o período de estágio na FEUP em Portugal.

Aos Colegas e amigos Fernanda Springer e Tiago Proto pelo apoio incondicional durante a fase de campo deste trabalho. Compartilho os méritos deste trabalho com vocês.

Ao colega e amigo André Lima por partilhar conhecimentos durante a fase de campo, laboratório e análises. Sua contribuição foi fundamental para a conclusão deste trabalho.

Aos colegas Alex e Marcelinho pelo apoio e dedicação durante a fase de campo do trabalho. Agradeço pela amizade e conhecimentos partilhados.

Ao engenheiro Paulo Henrique Dias, incentivador e realizador do projeto de pesquisa o qual este trabalho faz parte. Profissionais como você fazem a diferença na boa prática da engenharia nacional. Estendo meus agradecimentos aos demais funcionários da SEEL que contribuíram para a conclusão deste trabalho.

Ao engenheiro Guilherme Pereira pela paciência, compreensão e incentivo durante a fase final deste trabalho. Agradeço também os demais funcionários da GEOMECÂNICA que contribuíram na realização dos ensaios de laboratório e ao Eng. Felipe Cruz pelo apoio nesta fase. À Vivina pela paciência, incentivo e compreensão. Seu incentivo e carinho foram fundamentais. Obrigado por me fazer acreditar que era possível e que no final as coisas se ajustariam da melhor forma.

Aos amigos que de algum modo contribuíram com este trabalho, em especial: Carlos Ataliba, Amaury, Willian, Jorge Cardenas, Jackeline Castaneda e Amanda Jarek.

Aos colegas e amigos de Portugal pela amizade e companheirismo em especial: Sara, Nuno, Cristiana, Emanuel, Emílio e Isabel.

À CAPES e ao CNPq pelo apoio financeiro indispensável para a pesquisa.

Resumo

Saré, Alexandre Reis. **Comportamento de Escavação Grampeada Instrumentada em Solo Residual.** Rio de Janeiro, 2007. 336p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O solo grampeado ou solo pregado é uma técnica em que o reforço do maciço é obtido através da inclusão de elementos resistentes à tração, esforços cortantes e momentos de flexão. São apresentados a caracterização, instrumentação e monitoramento de uma escavação grampeada em uma encosta na cidade de Niterói (RJ). O talude possui altura superior a 30m em solo residual de gnaisse. A caracterização geotécnica compreendeu as fases de campo e laboratório. Para a caracterização de campo foram utilizados os dados de sondagens a percussão, mapeamento geológico-geotécnico e ensaios de arrancamento. No programa de investigações de laboratório foram realizados ensaios com o objetivo obter parâmetros dos solos necessários ao estudo do desempenho da obra em solo grampeado. A instrumentação projetada foi composta por tell tales, inclinômetros e grampos instrumentados com strain gages. As informações relativas ao monitoramento demonstram que os tell tales comportam-se qualitativamente equivalente aos inclinômetos. Os grampos instrumentados permitiram o acompanhamento das cargas ao longo do processo de escavação. Adicionalmente foram realizadas simulações numéricas em termos de equilíbrio limite, que permitiram avaliar o fator da segurança da escavação ao longo da obra, e tensão deformação que reproduziram os deslocamentos na encosta e cargas nos grampos com erro em torno de 25%. O conhecimento do comportamento de um maciço de solo grampeado é fundamental para o aprimoramento das técnicas de projeto e execução de solo grampeado.

Palavras-chave

Solo Grampeado; Escavação; Instrumentação; Monitoramento; Solo Residual.

Abstract

Saré, Alexandre Reis. **Behavior of an Instrumented Soil Nailed Excavation on a Residual Soil.** Rio de Janeiro, 2007. 336p. PhD. Thesis – Civil Engineering Department, Catholic University of Rio de Janeiro.

Soil Nailing is a technique where the slope stability is gotten through traction resistant elements (nails). This research shows the characterization, instrumentation and monitoring of a high wall soil nailed excavation in Niterói (RIO DE JANEIRO). The slope heights more than 30m and the soil was characterized as residual gneiss. The geotechnical caracterization was divided into field and laboratory phases. The field data used was SPT test, geotechnical mapping and pull-out tests. The laboratory tests were selected to inquiry parameters to evaluate the behavior of a soil nailed wall. The designed instrumentation was composed of tell tales, inclinometers and nails with strain gauges. The comparative analyses show that the results obtaneid through tell tales are similar to those obtanied by the inclinometers. The instrumented nails had allowed to monitoring the development of loads during the soil excavation. Additionally, numerical simulations had been carried out to evaluate the safety factor during the excavation, and to predict displacements and loads in the nails with an error around 25%. The knowledge of the behavior of soil nailed excavation is essential for the desing and improvement of this technique.

Keywords

Soil nailing; Excavation; Instrumentation; Monitoring; Residual soil.

Sumário

1 Introdução	33
1.1. Área de Estudo	34
1.2. Objetivos	35
1.3. Metodologia	36
2 Revisão Bibliográfica	38
2.1. Histórico e Desenvolvimento	39
2.2. Princípios da Técnica	41
2.3. Vantagens	41
2.4. Limitações	43
2.5. Método executivo	44
2.6. Execução dos grampos	46
2.7. Comparação com outras Técnicas de Contenção	47
2.7.1. Comparação com a técnica de cortinas ancoradas	47
2.7.2. Comparação com a terra armada	48
2.8. Mecanismos e Comportamento de Taludes Grampeados	49
2.8.1. Interação Solo-Grampo	50
2.8.2. Distribuição de Tensões/Deformações nos Grampos	51
2.8.3. Distribuição de Tensões/Deformações no Grampo Provocadas por Ensa	aios de
Arrancamento	60
2.8.4. Estado de Tensões no Maciço de Solo Grampeado	63
2.9. Estudo do Comportamento e Instrumentação de Obras em Solo Grampeado64	
2.10. Parâmetros de Projeto e Correlações Empíricas	73
2.11. Casos de Obras e Estudos	79
2.11.1. Instrumentação de Obras em Solo Grampeado:	83
2.11.2. Parâmetros a Serem Monitorados	83
2.12. Dimensionamento de Taludes Grampeados	85
2.12.1. Comparação entre Métodos	87
2.13. Análises Tensão Deformação	87
2.14. Casos de Simulação	89
2.15. O Projeto Solo Grampeado PUC-Rio/COPPE	90

3 Área de Estudo – Obra Museu II	93
3.1. Investigação Geológico-Geotécnica de Campo	97
3.2. Caracterização Geológico-Geotécnica	99
3.3. Descrição do Projeto	101
3.4. Cronologia da Obra	106
4 Ensaios de Laboratório	109
4.1. Amostragem	109
4.2. Programa Experimental	111
4.3. Ensaios de Caracterização	111
4.4. Curva Característica	115
4.5. Ensaio de Compressão Confinada	119
4.6. Ensaios de Cisalhamento Direto	122
4.7. Cisalhamento Direto Solo x Solo	123
4.7.1. Cisalhamento Direto Solo x Nata (Ensaio de Interface)	128
4.7.1.1. Execução dos ensaios de interface	128
4.8. Ensaios Triaxiais	133
4.8.1. Ensaios de Compressão Axial	136
4.8.2. Ensaios de Descarregamento Lateral	142
4.9. Resumo dos Parâmetros Obtidos	149
5 Investigação de Campo	157
5.1. Sondagem a percussão - SPT	157
5.2. Mapeamento Geológico - Modelo Tridimensional	160
5.3. Ensaios de Arrancamento	168
5.3.1. Procedimentos de ensaio	171
5.3.2. Resultados dos Ensaios AR00	174
5.3.3. Resultados dos Ensaios AR01	176
5.3.4. Resultados dos Ensaios AR02	178
5.3.5. Resultados dos Ensaios AR03	180
5.3.6. Resultado dos Ensaios AR04	182
5.4. Considerações Finais	187
6 Instrumentação e Monitoramento	190
6.1. Instrumentos Instalados	193
6.2. Inclinômetros	195

<
63
2
LÕ.
~
Ó
õ
Ξ.
ò
×
\sim
<u> </u>
~
_
g
. <u>=</u>
σ
ö
0
ž
č,
ð
ö
÷
÷=
5
Ψ
0
-
<u>o</u> .
$\overline{\mathbf{v}}$
÷
Ó
\leq
ب
Δ_

6.2.1. Tell Tales	206
6.2.2. Strain Gages (Extensômetros Elétricos)	223
<i>6.2.2.1.</i> Leitura dos <i>Strain gages</i>	228
6.2.2.2. Calibração dos Strain gages	230
6.3. Cargas nos grampos durante a escavação e serviço	235
6.3.1. Barras de 4m (cota 40,5m)	240
6.3.2. Barras de 5m (34m)	243
6.3.3. Barras de 10m (28m)	245
6.3.4. Barras de 13m (21m)	248
6.3.5. Barras de 15m (17m)	251
6.4. Análise Conjunta de Dados de Instrumentação	254
6.5. Distribuição das tensões nos grampos e ponto de tração máxima	258
6.6. Magnitude dos deslocamentos máximos no talude	261
6.7. Magnitude das forças de tração máxima nos grampos	266
6.8. Resumo de Instrumentação e Monitoramento	269
7 Simulações Numéricas	272
7.1. Características de Projeto	272
7.2. Equilíbrio Limite	274
7.2.1. Hipótese 01 – Solo Homogêneo não grampeado	275
7.2.2. Hipótese 02 – Solo Homogêneo grampeado	277
7.2.3. Hipótese 03 – Escavação grampeada com duas camadas de solo	279
7.2.4. Comparação entre as hipóteses consideradas	281
7.2.5. Condição de Equilíbrio para Diversas Superfícies de Ruptura	284
7.3. Simulação de Escavação (Método dos Elementos Finitos)	286
7.4. Programa Utilizado (PLAXIS)	286
7.4.1. Geometria e Aspectos de Modelagem	287
7.4.2. Elementos Estruturais da Simulação	290
7.4.3. Modelo Constitutivo de Endurecimento de Solo (Hardening Soil Model	– HSM)
	292
7.4.4. Obtenção de Parâmetros	295
7.4.5. Resultados Obtidos	296
7.4.6. Previsão de Deslocamentos	299
7.4.7. Inclinômetros	299
7.4.8. Tell-tales	301
7.4.9. Comparação das Cargas nos Grampos	304

7.5. Resumo das Simulações Numéricas	313
8 Conclusões e Sugestões	315
8.1. Conclusões sobre Ensaios de Laboratório	316
8.2. Conclusão sobre Investigações de Campo	317
8.3. Conclusão sobre Instrumentação e Monitoramento	318
8.4. Conclusões sobre Simulações Numéricas	319
8.5. Sugestões para Pesquisas Futuras	321
9 Referências bibliográficas	323

Lista de figuras

Figura 1 - Comparação entre as técnicas de execução de túneis com
revestimento flexível (a) e rígido (b). 40
Figura 2 - Aplicações do reforço de solos através do grampeamento: (a) na
estabilização de taludes; (b) no escoramento de escavações. 41
Figura 3 - Diversas fases construtivas de um solo grampeado45
Figura 4 - Fases executivas em solo grampeado: escavação, instalação dos
grampos e contenção completa (Linha Amarela, Rio de Janeiro, foto
GeoRio). 45
Figura 5 - Execução do concreto projetado (Linha Amarela, Rio de Janeiro, foto
GeoRio). 46
Figura 6 - Mecanismos de transferência de carga: (a) cortina ancorada; (b) muro
em solo grampeado 48
Figura 7 - Deslocamentos horizontais no muro de terra armada e no de solo
grampeado. 49
Figura 8 - Carregamento progressivo do grampo durante e após o processo de
escavação (Clouterre, 1991). 52
Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer,
Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001). 52
Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001).52Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre,
Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001).52Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991)53
Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001).52Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991)53Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental
Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001).52Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991)53Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental de solo grampeado (Clouterre, 1991)54
Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001).52Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991)53Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental de solo grampeado (Clouterre, 1991)54Figura 12 - Esforços desenvolvidos na zona passiva do grampo (Analogia de
Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001).52Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991)53Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental de solo grampeado (Clouterre, 1991)54Figura 12 - Esforços desenvolvidos na zona passiva do grampo (Analogia de Broms) (Cardoso, 1987).54
 Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001). Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991) Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental de solo grampeado (Clouterre, 1991) Figura 12 - Esforços desenvolvidos na zona passiva do grampo (Analogia de Broms) (Cardoso, 1987). Figura 13 - Distribuição de forças ao longo dos grampos (Stocker e Riedinger, 1991)
Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001).52Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991)53Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental de solo grampeado (Clouterre, 1991)54Figura 12 - Esforços desenvolvidos na zona passiva do grampo (Analogia de Broms) (Cardoso, 1987).54Figura 13 - Distribuição de forças ao longo dos grampos (Stocker e Riedinger, 1990).55
 Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001). Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991) Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental de solo grampeado (Clouterre, 1991) Figura 12 - Esforços desenvolvidos na zona passiva do grampo (Analogia de Broms) (Cardoso, 1987). Figura 13 - Distribuição de forças ao longo dos grampos (Stocker e Riedinger, 1990). Figura 14 - Distribuição da tração no grampo em relação ao processo de
 Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001). Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991) Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental de solo grampeado (Clouterre, 1991) Figura 12 - Esforços desenvolvidos na zona passiva do grampo (Analogia de Broms) (Cardoso, 1987). Figura 13 - Distribuição de forças ao longo dos grampos (Stocker e Riedinger, 1990). Figura 14 - Distribuição da tração no grampo em relação ao processo de escavação (Stocker e Riedinger, 1990).
 Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001). Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991) Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental de solo grampeado (Clouterre, 1991) Figura 12 - Esforços desenvolvidos na zona passiva do grampo (Analogia de Broms) (Cardoso, 1987). Figura 13 - Distribuição de forças ao longo dos grampos (Stocker e Riedinger, 1990). Figura 14 - Distribuição da tração no grampo em relação ao processo de escavação (Stocker e Riedinger, 1990). Figura 15 – Magnitude das forças axiais máximas desenvolvidas nos grampos
 Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001). Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991) Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental de solo grampeado (Clouterre, 1991) Figura 12 - Esforços desenvolvidos na zona passiva do grampo (Analogia de Broms) (Cardoso, 1987). Figura 13 - Distribuição de forças ao longo dos grampos (Stocker e Riedinger, 1990). Figura 14 - Distribuição da tração no grampo em relação ao processo de escavação (Stocker e Riedinger, 1990). Figura 15 - Magnitude das forças axiais máximas desenvolvidas nos grampos em função da profundidade de escavação (Springer, 2001).
 Figura 9 - Zonas ativa e passiva em escavações com grampos livres (Springer, 2001). Figura 10 - Grampos submetidos à flexão e esforços cisalhantes (Clouterre, 1991) Figura 11 - Desenvolvimento de região de cisalhamento em muro experimental de solo grampeado (Clouterre, 1991) Figura 12 - Esforços desenvolvidos na zona passiva do grampo (Analogia de Broms) (Cardoso, 1987). Figura 13 - Distribuição de forças ao longo dos grampos (Stocker e Riedinger, 1990). Figura 14 - Distribuição da tração no grampo em relação ao processo de escavação (Stocker e Riedinger, 1990). Figura 15 - Magnitude das forças axiais máximas desenvolvidas nos grampos em função da profundidade de escavação (Springer, 2001). Figura 16 - Localização dos pontos de força axial máxima nos grampos

Figura 17 - Deformações relativas a um grampo em função das datas de
monitoramento (Stocker e Riedinger, 1990) 58
Figura 18- Evolução do carregamento com as etapas de escavação 59
Figura 19 - Distribuição tensão-deformação de um grampo submetido ao avanço
da escavação 60
Figura 20 - Ensaio de arrancamento (Ortigão e Sayão, 2000). 60
Figura 21 - Distribuição das deformações medidas em um ensaio de
arrancamento ao longo de um grampo (Clouterre, 1991). 61
Figura 22 - Distribuição de forças de tração ao longo de um grampo com L= 3m
(Clouterre, 1991). 62
Figura 23 – Distribuição de forças de tração ao longo de um grampo de L = 12m
(Clouterre, 1991). 62
Figura 24 - Mobilização das tensões de cisalhamento em um grampo de L=3m
submetido ao ensaio de arrancamento (Clouterre, 1991). 62
Figura 25 - Mobilização das tensões de cisalhamento em um grampo de L=12 m
submetido ao ensaio de arrancamento (Clouterre, 1991). 63
Figura 26 - Evolução dos parâmetros de resistência a curto prazo em função do
percentual de argila (Schlosser e Elias, 1978). 70
Figura 27 - Variação da razão entre as forças de tração e cisalhamento em
função do deslocamento (Marchal, 1984) 71
Figura 28 - Influência da orientação dos grampos na mobilização de esforços de
tração e aumento de resistência ao cisalhamento (Jewell, 1980) 71
Figura 29 – Correlação entre resistência ao arrancamento q_s , pressão limite do
pressiômetro de Ménard p $_1$ e índice de resistência a penetração N_{SPT}
(Bustamante e Doix, 1985) 75
Figura 30 – Correlação entre a resistência ao arrancamento $q_{\rm s}$ e número de
golpes N(SPT) (Ortigão e Palmeira, 1992). 75
Figura 31 – Variação dos fatores de carga λ_1 e λ_1^* em função da tensão norma
(Proto Silva, 2005). 78
Figura 32 - Variação do Coeficiente de interface (α) em função da Tensão
normal para solo residual de gnaisse maduro e jovem (Proto Silva, 2005).79
Figura 33 - Mobilização de esforços nos grampos nas zonas ativa e passiva 85
Figura 34 - Localização da Obra na cidade de Niterói (Google, 2007). 93
Figura 35 - Vista de satélite da obra: (a) antes da escavação e (b) após a
escavação e execução dos edifícios (Google, 2006 e 2007). 95
Figura 36 - Obras Museu I e Museu II: (a) antes da escavação e (b) depois da

escavação e implantação das obras (Google, 2006 e 2007).	96
Figura 37 - Vista aérea das escavações grampeadas.	97
Figura 38 - Localização dos Pontos de Sondagem (SPT)	99
Figura 39 - Identificação do Perfil de Intemperismo.	100
Figura 40 - Vista Arquitetônica em corte do projeto do edifício (Geopro	jetos,
2004).	102
Figura 41 - Perfil da Encosta Escavada.	102
Figura 42 - Vista em Planta da Área Escavada (Geoprojetos, 2004).	103
Figura 43 - Projeto de estabilização para a seção A (Geoprojetos, 2004).	105
Figura 44 - Projeto de estabilização para a seção B (Geoprojetos, 2004).	106
Figura 45 - Fases de Escavação da obra.	108
Figura 46 – Posição de retirada dos blocos.	110
Figura 47 – Amostras indeformadas após moldagem e embalagem com par	afina.
	110
Figura 48 - Posição das amostras na Carta de Plasticidade de Casagrande	113
Figura 49 - Distribuição percentual dos materiais para as amostras	114
Figura 50 - Curvas granulométricas dos solos	114
Figura 51 - Variação de ϕ^b / ϕ' com o nível de sucção em ensaio	s de
cisalhemento direto (modificado de De Campos e Delgado, 1995)	116
Figura 52 - Curva Característica - Bloco BM01 (solo residual maduro)	118
Figura 53 - Curva Característica - Bloco BM07 (solo residual jovem)	118
Figura 54 – Variação de Parâmetros do Ensaio de Adensamento - BM02.	120
Figura 55 – Variação de Parâmetros do Ensaio de Adensamento - BM08.	120
Figura 56 - Variação do Módulo de Compressão Oedométrico (D) para amb	os os
solos	121
Figura 57 - Ensaio Oedométrico - BM02 (Solo Maduro)	122
Figura 58 - Ensaio Oedométrico - BM08 (Solo Jovem)	122
Figura 59 - Envoltória de resistência ao cisalhamento do solo BM03	126
Figura 60 - Envoltória de resistência ao cisalhamento do solo BM04	126
Figura 61 - Envoltória de resistência ao cisalhamento do solo BM05	127
Figura 62 - Envoltória de resistência ao cisalhamento do solo BM06	127
Figura 63 - Corpo-de-prova de interface solo/nata de cimento após o e	nsaio
(Proto Silva, 2005)	129
Figura 64 - Detalhe de um corpo-de-prova com nata de cimento nas be	ordas
(Proto Silva, 2005)	129
Figura 65 - Envoltórias de resistência ao cisalhamento da interface solo/na	ta de

cimento – BM03 (Proto Silva, 2005). 130
Figura 66 - Envoltórias de resistência ao cisalhamento da interface solo/nata de
cimento – BM05 (Proto Silva, 2005). 131
Figura 67 - Envoltórias de resistência ao cisalhamento da interface solo/nata de
cimento – BM07 (Proto Silva, 2005). 131
Figura 68 - Envoltórias de resistência ao cisalhamento da interface solo/nata de
cimento – BM09 (Proto Silva, 2005). 132
Figura 69 - Moldagem 134
Figura 70 - Corpo de Prova após a Ruptura134
Figura 71 - Prensa Triaxial (PUC-Rio). 137
Figura 72 - Ensaios Triaxiais - BM04 (Curvas tensão-deformação e de
deformabilidade volumétrica) 138
Figura 73 - Ensaios Triaxiais - BM07 (curvas tensão-deformação e
deformabilidade volumétrica) 139
Figura 74 - Trajetórias de Tensões e Envoltórias de Resistência do Solo na
Condição Saturada (BM06) 141
Figura 75 - Trajetórias de Tensões e Envoltórias de Resistência do Solo nas
Condições Saturada e Natural (BM07) 141
Figura 76 - Prensa Utilizada para o Ensaio de Descarregamento Lateral. 143
Figura 77 - Ensaios Triaxiais de Descarregamento Lateral - BM03 (curvas
tensão-deformação e deformabilidade volumétrica) 145
Figura 78 - Ensaios Triaxiais de Descarregamento Lateral - BM06 (curvas
tensão-deformação e deformabilidade volumétrica) 146
Figura 79 - Trajetórias de Tensões e Envoltórias de Resistência do Solo (BM03)
148
Figura 80 - Trajetórias de Tensões e Envoltórias de Resistência do Solo (BM06)
148
Figura 81 - Envoltórias de Resistência para o Solo Residual Maduro na Condição
Natural 151
Figura 82 - Envoltórias de Resistência para o Solo Residual Maduro na Condição
Submersa ou Saturada 152
Figura 83 - Envoltórias de Resistência para o Solo Residual Jovem na Condição
Natural 153
Figura 84 - Envoltórias de Resistência para o Solo Residual Jovem na Condição
Submersa ou Saturada 153
Figura 85 - Variação dos Módulos de Deformabilidade em função da Tensão

Confinante para o Solo Residual Maduro 155
Figura 86 - Variação dos Módulos de Deformabilidade em função da Tensão
Confinante para o Solo Residual Jovem 155
Figura 87 - Variação dos Módulos de Poisson em função da Tensão Confinante
para o Solo Residual Maduro 156
Figura 88 - Variação dos Módulos de Poisson em função da Tensão Confinante
para o Solo Residual Jovem 156
Figura 89 - Distribuição do Valor N _{spt} para SP01, SP02 e SP03. 158
Figura 90 - Distribuição do Valor N _{spt} para SP04, SP05, SP06 e SP07.
Figura 91 - Localização dos furos de sondagem no terreno (Geoprojetos, 2004
160
Figura 92 - Mapa geológico-estrutural da área das obras Museu 1 e Museu 2
(Gomes Silva, 2006). 163
Figura 93 - Vista geral da área das obras Museu 1 e Museu 2 em foto aérea na
escala 1:8.000 (Gomes Silva, 2006) 164
Figura 94 - Mapeamento Geológico para o Talude 1 (modificado de Gomes Silva
2006). 166
Figura 95 - Mapeamento Geológico para o Talude 2 (modificado de Gomes Silva
2006). 166
Figura 96 - Área do cupinzeiro identificada no talude 02 (vista lateral do talude)
167
Figura 97 - Mapeamento Geológico para o Talude 03 (modificado de Gomes
Silva, 2006). 168
Figura 98 - Mapeamento Geológico para o Talude 04 (modificado de Gomes
Silva, 2006). 168
Figura 99 - Curva deslocamento x força de um ensaio de arrancamento
(Clouterre, 1991). 170
Figura 100 - Localização das cotas dos grampos de ensaios de arrancamento
na escavação. 171
Figura 101 - Montagem do ensaio de arrancamento (Springer, 2006). 172
Figura 102 - Arranjo de instrumentação nos grampos de arrancamento (Proto
Silva, 2005). 173
Figura 103 - Curva Carga x Deslocamento da cabeça do grampo do ensaio de
arrancamento AR00a (Springer, 2006). 175
Figura 104 - Curva Carga x Deslocamento da cabeça do grampo do ensaio de
arrancamento AR00b (Springer, 2006). 175

- Figura 105 Distribuição de carga ao longo do grampo do ensaio AR00a (Springer, 2006). 176
- Figura 106 Distribuição de carga ao longo do grampo do ensaio AR00b (Springer, 2006). 176
- Figura 107 Curvas Carga x Deslocamento da cabeça do grampo dos ensaios de arrancamento AR01: (a) grampo instrumentado; (b) grampo não instrumentado. 177
- Figura 108 Distribuição de carga ao longo do grampo instrumentado do ensaio AR01. 178
- Figura 109 Curvas Carga x Deslocamento da cabeça do grampo dos ensaios de arrancamento AR02: (a) grampo instrumentado; (b) grampo não instrumentado. 180
- Figura 110 Distribuição de carga ao longo do grampo instrumentado do ensaio AR02. 180
- Figura 111 Curvas Carga x Deslocamento da cabeça do grampo dos ensaios de arrancamento AR03: (a) grampo instrumentado; (b) grampo não instrumentado. 182
- Figura 112 Distribuição de carga ao longo do grampo instrumentado do ensaio AR03. 182
- Figura 113 Curvas Carga x Deslocamento da cabeça dos grampos dos ensaios de arrancamento da etapa AR04: (a) grampo instrumentado; (b) grampo não instrumentado.
- Figura 114 Distribuição de carga ao longo do grampo instrumentado do ensaio AR04. 184
- Figura 115 Distribuição esquemática da tensão normal nos grampos (Proto Silva, 2005) 187
- Figura 116 Variação de qs em função da cota de elevação para diferentes métodos de obtenção. 188
- Figura 117 Evolução de k_{β} com a profundidade. 189
- Figura 118 Localização da região de instrumentação.191
- Figura 119 Localização dos dispositivos de investigação geotécnica (taludes 01 e 02). 192
- Figura 120 Localização dos dispositivos de investigação geotécnica (taludes 03 e 04). 192
- Figura 121 Vista superior do talude com escavação em nichos195
- Figura 122 Inserção do inclinômetro para monitoramento dos deslocamentos

196 horizontais (Nunes et al., 2006) Figura 123 - Caixa de proteção e tampa do tubo de acesso do inclinômetro (Nunes et al., 2006) 196 Figura 124 - Localização dos Inclinômetros na Encosta do Museu II. 198 Figura 125 - Referencial adotado para as leituras inclinométricas 200 Figura 126 – Deslocamentos horizontais registrados pelo Inclinômetro I-01 -Direção A (Geoprojetos, 2007). 200 Figura 127 – Deslocamentos horizontais registrados pelo Inclinômetro I-01 -Direção B (Geoprojetos, 2007). 201 Figura 128 - Deslocamentos horizontais registrados pelo Inclinômetro I-03 -Direção A (Geoprojetos, 2007). 201 Figura 129 - Deslocamentos horizontais registrados pelo Inclinômetro I-03 -202 Direção B (Geoprojetos, 2007). Figura 130 - Determinação da linha de deslocamentos com base nas informações dos inclinômetros 203 Figura 131 - Evolução dos deslocamentos horizontais para as cotas 17, 21, 28, 34 e 40m - I-01 204 Figura 132 – Evolução dos deslocamentos horizontais para as cotas 17, 21, 28, 34 e 40m - I-03 205 Figura 133 - Localização do plano de falhas em relação ao deslocamento observado pelo Inclinômetro 03 (Google Earth, 2007). 205 Figura 134 - Esquema do conjunto de três tell tales de comprimentos diversos em um único furo (Nunes et al, 2006). 206 Figura 135 – Esquema de 3 tell tales em furo: (a) Extremidade fixa de 1 fio; (b) Seção transversal dos fios ao longo e na saída do furo; (c) Vistas lateral e frontal da extremidade livre dos fios (Nunes et al, 2006). 207 Figura 136 - Conjunto de tell tales na caixa metálica (Lima, 2007). 208 Figura 137 - Posicionamento das caixas de *tell tale* na encosta. 209 210 Figura 138 - Posicionamento das três primeiras caixas de tell-tales 210 Figura 139 - Leituras manuais dos tell-tales Figura 140 - Deslocamentos dos tell tales (caixa 01) em função da evolução da escavação para a cota 40m. 212 Figura 141 - Localização da obra adjacente a área de estudo (Google Earth, 2007) 213 Figura 142 - Análise conjunta de deslocamentos de inclinômetros (direção principal) e tell tales (Cx 01) Cota 40m. 213

Figura 143 - Leituras dos tell tales (Cx 02) em função da evolução da escavação
Cota 34m. 214
Figura 144 - Análise conjunta de deslocamentos de inclinômetros (direção
principal) e <i>tell tales</i> (Cx 02) Cota 34m 215
Figura 145 - Deslocamentos dos tell tales (caixa 03) em função da evolução da
escavação Cota 28m. 216
Figura 146 - Análise conjunta de deslocamentos de inclinômetros (direção
principal) e <i>tell tales</i> (caixa 03) para a cota 28m 216
Figura 147 - Deslocamentos dos tell tales (caixa 04) em função da evolução da
escavação Cota 21m. 217
Figura 148 - Análise conjunta de deslocamentos de inclinômetros (direção
principal) e <i>tell tales</i> (caixa 04) Cota 21m 218
Figura 149 - Leituras dos tell tales (caixa 05) em função da evolução da
escavação Cota 17m. 218
Figura 150 - Análise conjunta de deslocamentos de inclinômetros (direção
principal) e tell tales (caixa 05) Cota 17m 219
Figura 151 - Deslocamentos indicados pelos tell tales em função de sua
localização no interior do talude para o dia 23/02/05. 220
Figura 152 - Deslocamentos indicados pelos tell tales em função de sua
localização no interior do talude para o dia 13/07/05. 221
Figura 153 - Deslocamentos indicados pelos Tell Tales em função de sua
localização no interior do talude para o dia 05/03/07. 221
Figura 154 - Localização da região de maiores deslocamentos indicados pelos
tell tales. 222
Figura 155 - Localização das regiões de maiores deslocamentos indicados pelos
tell tales e inclinômetros. 223
Figura 156 - Distribuição de Extensômetros nas barras de 4, 5 e 10m.225
Figura 157 - Distribuição de Extensômetros nas barras de 13 e 15m225
Figura 158 - Posição dos grampos instrumentados na face de escavação. 227
Figura 159 - Colagem e ligação do strain gage e circuito externo de ponte de
Wheatstone (Nunes et al., 2006) 228
Figura 160 - Calibração e resultados das barras instrumentadas com 5 strain
gages (a) Calibração; (b) Resultados (Nunes et al., 2006). 231
Figura 161 - Esquema de ligação dos equipamentos para aquisição de dados
(Springer, 2006) 233
Figura 162 - Barras Instrumentadas sendo preparadas para transporte por

Figura 182 - Análise Conjunta dos Dados de Instrumentação - Cota 40m. 256 Figura 183 - Análise Conjunta dos Dados de Instrumentação - Cota 34m. 256 Figura 184 - Análise Conjunta dos Dados de Instrumentação - Cota 28m. 257 Figura 185 - Análise Conjunta dos Dados de Instrumentação - Cota 21m. 257 Figura 186 - Análise Conjunta dos Dados de Instrumentação - Cota 17m. 258 Figura 187 - Localização da Zona de Tração Máxima em função dos pontos de tração máxima fornecidos pelos grampos instrumentados. 259 Figura 188 - Localização da Zona de Tração Máxima em função dos pontos de tração máxima fornecidos pelos grampos instrumentados. 261 Figura 189 - Análise normalizada dos deslocamentos em função da altura de escavação para o I 01. 262 Figura 190 - Análise normalizada dos deslocamentos em função da altura de 264 escavação para o Inclinômetro 03 Figura 191 - Análise normalizada dos deslocamentos em função da altura de escavação para os tell tales. 265 Figura 192 - Força de Tração Máxima normalizada em função do avanço da 269 escavação Figura 193 – Tipos de Fixação de Extremidades de Grampos (Georio, 1999) 273 Figura 194 - Hipótese 01 – Geometria da escavação não grampeada em solo homogêneo 275 Figura 195 – Resultado correspondente a condição de ruptura para a hipótese 01. 276 Figura 196 - Hipótese 02 – Geometria considerada e resultados para FS para a escavação grampeada em solo homogêneo (condição intermediária) 278 Figura 197 - Hipótese 02 – Geometria considerada e resultados para FS para a escavação grampeada em solo homogêneo (condição final de escavação) 279 Figura 198 - Hipótese 03 – Geometria considerada e resultados de FS para a escavação grampeada em solo homogêneo (condição final de escavação) 280 Figura 199 – Variação do fator de segurança com a escavação para as três hipóteses. 283 Figura 200 -Localização assumida para as superfícies de maiores deslocamentos obtidas por meio de instrumentação (inclinômetros e tell 285 tales). Figura 201 - Geometria e aspectos utilizados na simulação com o programa

Plaxis. 287 Figura 202 - Malha de Elementos Finitos utilizada para as simulações de escavação. 288 Figura 203 - Condição Inicial de Tensões para a Simulação de Escavação. 289 Figura 204 - Representação da superfície de plastificação do modelo de Endurecimento no espaço das tensões principais para um solo não coesivo (Frigerio, 1996). 292 Figura 205 - Simulação das etapas de escavação e aplicação de grampos no programa PLAXIS. 297 Figura 206 - Comparação entre os deslocamentos horizontais obtidos por meio de simulação numérica e leituras do inclinômetro 01. 300 Figura 207 - Comparação entre os deslocamentos horizontais obtidos por meio de simulação numérica e leituras do inclinômetro 03. 301 Figura 208 - Comparação entre os deslocamentos horizontais obtidos por meio de simulação numérica e leituras dos tell-tales da caixa 01. 302 Figura 209 - Comparação entre os deslocamentos horizontais obtidos por meio de simulação numérica e leituras dos tell-tales da caixa 02. 302 Figura 210 - Comparação entre os deslocamentos horizontais obtidos por meio de simulação numérica e leituras dos tell-tales da caixa 03. 303 Figura 211 - Comparação entre os deslocamentos horizontais obtidos por meio 303 de simulação numérica e leituras dos tell-tales da caixa 04. Figura 212 – Comparação entre os deslocamentos horizontais obtidos por meio de simulação numérica e leituras dos tell-tales da caixa 05. 304 Figura 213 - Comparação entre as cargas obtidas por meio de simulação numérica e leituras dos grampos de 4m instrumentados. 305 Figura 214 - Comparação entre distribuição de carregamentos ao longo do grampo obtida por meio de simulação numérica e leituras dos grampos de 4m instrumentados. 306 Figura 215 - Comparação entre as cargas obtidas por meio de simulação numérica e leituras dos grampos de 5m instrumentados. 307 Figura 216 - Comparação entre distribuição de carregamentos ao longo do grampo obtida por meio de simulação numérica e leituras dos grampos de 5m instrumentados. 308 Figura 217 - Comparação entre as cargas obtidas por meio de simulação numérica e leituras dos grampos de 10m instrumentados. 309 Figura 218 - Comparação entre distribuição de carregamentos ao longo do grampo obtida por meio de simulação numérica e leituras dos grampos de 10m instrumentados. 309

- Figura 219 Comparação entre as cargas obtidas por meio de simulação numérica e leituras dos grampos de 13m instrumentados. 310
- Figura 220 Comparação entre distribuição de carregamentos ao longo do grampo obtida por meio de simulação numérica e leituras dos grampos de 13m instrumentados. 311
- Figura 221 Comparação entre as cargas obtidas por meio de simulação numérica e leituras dos grampos de 15m instrumentados. 312
- Figura 222 Comparação entre distribuição de carregamentos ao longo do grampo obtida por meio de simulação numérica e leituras dos grampos de 15m instrumentados. 313

Lista de tabelas

Tabela 1 - Tipo de solicitação em reforço de solo (Schlosser, 1982)	49		
Tabela 2 - Aplicações e objetivos de um sistema de reforço (Gässler, 1990)	50		
Tabela 3 - Principais Fatores de Influência no Comportamento de Grampos	65		
Tabela 4 - Estabilidade do talude da escavação (Lima, 2002)	67		
Tabela 5 - Ensaios de cisalhamento direto e arrancamento para diferentes graus de			
densidade de solos (Schlosser e Elias, 1978)	69		
Tabela 7 - Valores considerados para $q_{\rm s}$ em função da elevação (Geopr	ojetos,		
2004)	104		
Tabela 8 - Variação do fator de segurança em função da seção e da eta	apa de		
escavação	105		
Tabela 9 - Datas importantes na obra em função da cota de escavação	e das		
ocorrências e serviços verificados na obra	107		
Tabela 10 - Distribuição do Programa Experimental para os Blocos Extraídos.	.111		
Tabela 11 – Resultados dos ensaios de caracterização.	113		
Tabela 12 - Características dos corpos-de-prova dos ensaios de cisalha	imento		
direto	125		
Tabela 13 - Parâmetros de resistência dos solos (adaptado de Proto Silva ,	2005)		
	128		
Tabela 14 – Parâmetros de resistência da interface (adaptado de Proto Silva,	2005)		
	132		
Tabela 15 - Campanha de ensaios triaxiais	135		
Tabela 16 - Índices Físicos para os Ensaios de Compressão Axial.	137		
Tabela 17 - Parâmetros Obtidos nos Ensaios Triaxiais de Carregamento Axia	142		
Tabela 18 - Índices Físicos para os Ensaios de Descarregamento Lateral	143		
Tabela 19 - Resumo dos Parâmetros Obtidos nos Ensaios Triaxia	is de		
Descarregamento Lateral	149		
Tabela 20 - Resumo dos resultados dos ensaios de caracterização e adensa	Imento		
	150		
Tabela 21 - Valores de qs obtidos em função dos ensaios SPT	159		
Tabela 22 - Caracterização das descontinuidades do maciço (Gomes Silva,	2006)		
	162		
Tabela 23 - Resumo dos Resultados dos Ensaios de Arrancamento	184		

Tabela 24 - Valores representativos de atrito lateral	186
Tabela 25 - Tensão normal atuante nos grampos (modificada de Proto Silva	, 2005)
	186
Tabela 26 - Resumo dos dados obtidos na campanha de investigação de	campo
	188
Tabela 27 - Resumo dos elementos de investigação e monitoramento na obr	a.192
Tabela 28 - Datas importantes da investigação e monitoramento da obra.	194
Tabela 29 - Dados referentes à instalação dos inclinômetros	199
Tabela 30 - Cotas de interesse para os inclinômetros	203
Tabela 31 - Resumo do projeto de instrumentação dos alongâmetros	209
Tabela 32 - Leituras de deslocamentos dos tell tales ao longo do perío	odo de
escavação e monitoramento	211
Tabela 33 - Utilização de barras e extensômetros para monitorame	nto de
escavação	226
Tabela 34 - Classificação das barras instrumentadas	226
Tabela 35 - Deformação dos <i>strain gages</i> x carga nos grampos	230
Tabela 36 - Comparação entre os valores de deformação obtidos teo	órica e
experimentalmente (Nunes et al., 2006)	232
Tabela 38 - Diário de Obra Simplificado	238
Tabela 39 - Strain Gages que apresentaram problemas durante o monitora	amento
	239
Tabela 40 - Instrumentos utilizados na análise conjunta dos dados	255
Tabela 41 - Nível de escavação para o início do monitoramento e raz	zão de
deslocamentos para o final de escavação em função da cota j	para o
Inclinômetro 01.	263
Tabela 42 - Nível de escavação no início do monitoramento e raz	zão de
deslocamentos para o final de escavação em função da cota j	para o
inclinômetro I-03.	264
Tabela 43 - Nível de escavação para início do monitoramento e raz	zão de
deslocamentos para o final de escavação em função da cota para os <i>te</i>	ell tales.
	266
Tabela 44 - Cargas de Tração Máxima e Cargas no Final de Monitoramen	to para
os grampos instrumentados	267
Tabela 45 - Cargas de Tração Máxima e Cargas no Final de Monitoramen	to para
os grampos instrumentados	268

Tabela 46 - Condições utilizadas para cada uma das hipóteses das análises de

equilíbrio limite. 275 Tabela 47 - Parâmetros do solo utilizados na hipótese 01 276 Tabela 48 - Parâmetros Geomecânicos utilizados na hipótese 02 277 280 Tabela 49 - Parâmetros Geomecânicos utilizados na hipótese 03. Tabela 50 - Evolução do fator de segurança nas diferentes hipóteses em função da 283 escavação Tabela 51 - Comparação dos valores de índices característicos em obras de solo grampeados (injetados) (modificado de Lima, 2007) 284 Tabela 52 - Comparação dos valores típicos de projetos em estruturas de solo grampeado (modificado de Lima, 2007) 284 Tabela 53 - Fatores de Segurança nas superfícies indicadas pela instrumentação. 285 Tabela 54 - Valores de Ko utilizados para a definição das condições iniciais de tensão 289 Tabela 55 - Parâmetros utilizados para os elementos estruturais considerados291 Tabela 56 - Equações e módulos necessários para o modelo de endurecimento de 294 solos Tabela 57 - Valores do expoente m em função do tipo de solo (Waterman, 2007) 294 Tabela 58 - Outros parâmetros necessários para o modelo de endurecimento de 294 solos Tabela 59 - Resumo dos parâmetros obtidos por meio de ensaios de laboratório295 Tabela 60 - Parâmetros de referência obtidos para o modelo de endurecimento de solos 296 Tabela 61 - Parâmetros obtidos para os elementos estruturais com base no estudo paramétrico. 298 Tabela 62 - Parâmetros de referência obtidos para o modelo de endurecimento de solos 298

Lista de símbolos

- α Coeficiente de interface
- a Constante (entre 36 e 48)
- Área da seção transversal da barra de aço na região de A
- colagem do strain gage
- β Inclinação da face do talude
- c' Coesão do solo
- C_{0} ' Resistência à compressão uniaxial da nata
- c_a' Adesão da interface solo/nata de cimento
- cc_{final} Leitura final da célula de carga [V]
- cc_{inicial} Leitura inicial da célula de carga [V]
 - c_{nat} Coesão da amostra natural
 - c_{sub} Coesão da amostra submersa
 - c_v Coeficiente de Adensamento
 - δ Deslocamento horizontal
 - d Diâmetro da barra de aço
 - D Diâmetro do furo de sondagem / Diâmetro da perfuração
 - δ_v Deslocamento Vertical
 - δ_h Deslocamento Horizontal
 - $\delta \sigma_h$ Acréscimo de tensão horizontal
 - $\delta \sigma_v$ Acréscimo de tensão vertical
 - δ ' Ângulo de atrito da interface solo/nata de cimento
 - Deslocamento axial do grampo durante o ensaio de ΔL arrancamento
- É o deslocamento correspondente à máxima força de $\Delta L_{arrancamento}$ ensaio
- Na hipótese de ocorrer fase de cisalhamento, corresponde $\Delta L_{cisalhamento}$ ao maior deslocamento de ensaio
 - Variação de voltagem dos terminais da Ponte de ΔL
 - Wheatstone
 - ∆R Variação de resistência do extensômetro elétrico
 - D Módulo de Compressão Oedométrico
 - ε_{rad} Deformação radial
 - ε_{ax} Deformação axial
 - ε Deformação medida por strain gage
 - e Índice de vazios
 - E_{ur} Módulo de deformabilidade na Fase de Recarregamento
 - E Módulo Oedométrico
 - Módulo de deformabilidade referente a metade da carga E_{50} máxima
 - E_p Eficiência da re-injeção no parâmetro P
 - F Força axial aplicada à barra de aço durante o ensaio de arrancamento

F Carga de tração aplicada ao grampo

 ϕ_{grampo} Diâmetro do grampo

- φ' Ângulo de atrito do solo
- Carga máxima axial desenvolvida durante o ensaio de
- F_{max} arrancamento
- ϕ_{nat} Ângulo de atrito da amostra natural
- FS Fator de segurança
- ϕ_{sub} Ângulo de atrito da amostra submersa
- γ_{nat} Peso específico da amostra natural
- G_S Densidade real dos grãos
- H_{esc} Altura de Escavação
 - H Profundidade (altura) total de escavação
 - i Inclinação do grampo
 - IP Índice de Plasticidade
 - k Coeficiente de Permeabilidade
 - Coeficiente correspondente à inclinação inicial da curva de
 - k_{β} deslocamento x força
 - K₀ Coeficiente de Empuxo no Repouso
- L/H Avanço da Escavação
 - L Comprimento do grampo
 - λ_1 Fator de carga para solo residual jovem (areia-argilosa)
- λ_1^* Fator de carga para solo residual maduro (argila-arenosa)
- L_A Comprimento de ancoragem ou do bulbo ancorado
- Lancorado Comprimento ancorado ou injetado do grampo
 - L_b Comprimento do bulbo (zona passiva do grampo)
 - LL Limite de Liquidez
 - LP Limite de Plasticidade
 - μ Coeficiente de atrito
 - m_v Coeficiente de variação volumétrica
 - M_{max} Momento Máximo
 - N_{SPT} Índice de resistência à penetração. Número de golpes do ensaio SPT
 - ψ Ângulo de dilatância
 - qs Resistência ao arrancamento
 - R Resistência nominal do extensômetro elétrico
 - Rinter Razão de interface
 - Rf Razão de esforço de ruptura
 - $\sigma\,$ Tensão aplicada na barra de aço
 - σ_{ensaio} Tensão de ensaio
- σ_{esc} ou σ_{vm} Tensão de Pré-adensamento
 - σ_h Tensão horizontal
 - S Grau de Saturação
 - S_{min} Seção mínima do tirante

- $\sigma_n\,$ Tensão normal aplicada ao grampo
- σ_r Tensão de ruptura da barra do tirante
- σ_t Tensão de trabalho ou admissível
- σ_{últ} Tensão última
- σ_v Tensão vertical
- t Tempo
- τ Tensão cisalhante
- to Tempo inicial de cada etapa de carregamento
- τ_{adm} Tensão de aderência admissível rocha-nata

$\tau_{barra-nata}$ Tensão de aderência ou de cisalhamento barra-nata

- T_{LE} Carga limite estimada
- τ_m Tensão de aderência média
- T_n Carga axial de tração no grampo

 $\tau_{nata-maciço}$ Tensão de aderência no contato nata-maciço

- Tensão de aderência última no contato barra-nata para
- τ_{ult} barras lisas
 - θ Umidade Volumétrica
- v Coeficiente de Poisson
- V Voltagem de excitação da Ponte de Wheatstone
- w Umidade
- z profundidade

Lista de abreviaturas

3D	Tridimensional
ABEF	Associação brasileira de estruturas de fundações
ABMS	Associação Brasileira de Mecânica dos Solos e Engenharia
	Geotécnica
ABNI	Associação brasileira de normas técnicas
BM1 e BM2	Blocos retirados na cota 41m
BM3 e BM4	Blocos retirados na cota 35m
BM5 e BM6	Blocos retirados na cota 28m
BM/ e BM8	Blocos retirados na cota 21m
BM9 e BM10	Blocos retirados na cota 17,5m
CLOUTERRE	French National Project CLOUTERRE
Cx01	Caixa de <i>tell tales</i> 01
Cx02	Caixa de <i>tell tales</i> 02
Cx03	Caixa de <i>tell tales</i> 03
Cx04	Caixa de <i>tell tales</i> 04
Cx05	Caixa de <i>tell tales</i> 05
CPRM	Companhia de Recursos Minerais
COBRAE	Conterência brasileira sobre estabilidade de encostas
Coppe/UFRJ	civil da UFRJ
FLAC	Fast Lagrangian Analysis of Continua
FEUP	Faculdade de Engenharia da Universidade do Porto
GEORIO	Fundação instituto de geotécnica do município do Rio de Janeiro
IPT	Instituto de Pesquisas Tecnológicas do Estado de São Paulo
I-01	Inclinômetro 01
I-03	Inclinômetro 03
MAC	Museu de Arte Contemporânea de Niterói
MEF	Método dos Elementos Finitos
NA	Nível d'água estabelecido
NATM	New Austrian tunnelling method
NBR	Norma brasileira
NE	Direção nordeste
PUC-Rio	Pontifícia Universidade Católica do Rio de Janeiro
SE	Direção sudeste
SEEL	Serviços especiais de engenharia Ltda
SEFE	Seminário de engenharia de fundações especiais e geotecnia
SG 0	<i>Strain gage</i> inicial ou zero
SG1	Strain gage 1
SG2	Strain gage 2
SG3	Strain gage 3
SG4	Strain gage 4
SG5	Strain gage 5
SG6	Strain gage 6
SINDUSCON	Sindicato da indústria da construção civil do estado de São
	Paulo

- SPT Standard penetration test
- SUCS Sistema unificado de classificação de solos
 - SW Direção sudoeste
 - UnB Universidade de Brasília
 - USP Universidade de São Paulo